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Abstract A dynamic programming algorithm for constructing optimal dyadic deci-

sion trees was recently introduced, analyzed, and shown to be very effective for low

dimensional data sets. This paper enhances and extends this algorithm by: introducing

an adaptive grid search for the regularization parameter that guarantees optimal so-

lutions for all relevant trees sizes, replacing the dynamic programming algorithm with

a memoized recursive algorithm whose run time is substantially smaller for most reg-

ularization parameter values on the grid, and incorporating new data structures and

data pre-processing steps that provide significant run time enhancement in practice.

Keywords Decision tree · Classification · Learning algorithm

1 Introduction

The most common algorithms for decision trees, e.g. CART [3] and C4.5 [15,16], use a

greedy splitting algorithm to construct an initial tree followed by an “optimal” prun-

ing algorithm to produce the final tree. However greedy approaches are generally not

robust to the data distribution, and can therefore produce arbitrarily bad results ([5],

Chapter 20). On the other hand, a simple structural risk minimization algorithm ap-

plied to cyclic dyadic decision trees (i.e. trees whose splits are determined by cycling

through the coordinates and splitting at the interval mid-points) is guaranteed to be

robust to distribution [21–23]. Recently it has been shown that allowing the dyadic

splits to be performed in arbitrary order, and then designing the tree to minimize a

regularized risk, also yields robust performance guarantees [23,2] and tends to give

The work was supported by the Laboratory Directed Research and Development (LDRD)
office at Los Alamos National Laboratory.

D. Hush
MS B265, Group ISR-2, Los Alamos National Laboratory, Los Alamos, NM 87545
Tel.: 1-505-665-2722
Fax: 1-505-665-5220
E-mail: dhush@lanl.gov

R. Porter
MS D436, Group ISR-2, Los Alamos National Laboratory, Los Alamos, NM 87545



2

better results in practice [2]. The current best algorithm for designing these trees is

the dynamic programming algorithm of Blanchard et al. [2] which was inspired by the

“dyadic CART” algorithm of Donoho [6]. Blanchard et al. provide a thorough develop-

ment of this algorithm and its properties, and demonstrate its utility through a series

of empirical experiments. However the choices of class size and regularization param-

eter remain open issues for this method in practice. We develop an efficient algorithm

that automatically chooses the class size to balance the trade-off between represen-

tational richness and computation. We show that the standard approach of searching

a uniform grid for the regularization parameter can be flawed. Instead we describe a

finite (unequally spaced) grid that can be computed ahead of time and is guaranteed

to yield optimal solutions for all distinct (error, tree size) pairs that can be realized

by minimizing the regularized risk. We also describe adaptive algorithms for efficiently

searching this grid. Finally, to accelerate this grid search we replace the core dynamic

programming algorithm with a memoized recursive algorithm that allows a type of

lookahead pruning that yields significantly faster run times.

2 Definitions, Notation, and Background

Consider a rectangle X ⊂ ℜd defined by

X = [a1, b1] × [a2, b2] × ... × [ad, bd]

where all ai and bi are finite and ai < bi, ∀i. A dyadic split of X along coordinate i

is a partition of X into two child rectangles Li(X) and Ri(X) which are formed by

splitting at the midpoint of the ith coordinate interval,

Li(X) := [a1, b1] × ... × [ai−1, bi−1] ×

»

ai,
ai + bi

2

«

× [ai+1, bi+1] × ... × [ad, bd]

Ri(X) := [a1, b1] × ... × [ai−1, bi−1] ×

»

ai + bi

2
, bi

–

× [ai+1, bi+1] × ... × [ad, bd] .

A dyadic partition of X is a partition π(X) = {X1, X2, X3, ...} whose members are

terminal rectangles of a process that starts with X and recursively applies dyadic

splits to child rectangles1. This process can be represented by a binary tree TX whose

internal nodes correspond to the dyadic splits and whose leaves correspond to the

terminal rectangles (as shown in Figure 1). Although a specific tree defines a unique

partition, it is not necessarily the only tree that does so. Nevertheless, throughout this

paper we use a binary tree TX to represent a partition, with the understanding that

unless a specific tree is indicated, any valid tree will suffice. We can efficiently identify

the terminal rectangle occupied by a point x ∈ X by starting at the root node of the tree

and, by comparing the component values of x with the tree node split points, traversing

the path to a leaf. By associating a value yj ∈ Y with each leaf rectangle Xj ∈ π(X),

and then assigning the value yj to all values of x ∈ Xj we obtain a piecewise-constant

function on X that we denote by TX . Throughout this paper we adopt an abuse of

notation where we use TX to represent a tree, the partition formed by the tree, and

the function derived from it, with the understanding that it will be clear from the

1 We place no restrictions on the order in which coordinates are split or the relative number
of splits for each coordinate. This is consistent with the definition in [2], but differs slightly
from the definition in [21].
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context which meaning is intended. When Y is a finite set of labels associated with a

pattern classification problem we call the function TX a dyadic classification tree. Let

k = (k1, k2, ..., kd), ki ≥ 0 and define Tk to be the class of dyadic classification trees

with at most ki splits for dimension i. The members of Tk are formed by considering

the partitions produced by all possible trees with at most ki splits for dimension i,

and then considering all possible label assignments for each of these partitions. Now

consider the following supervised classification problem.

Definition 1 Let P be an unknown probability distribution on X×Y . Given a collec-

tion of data D = ((x1, y1), ..., (xn, yn)) sampled i.i.d. according to P , determine a value

k and a classifier T̂X ∈ Tk such that the classification error eP (T̂X) := P (T̂X(x) 6= y)

is close to the optimal error e∗P := inff eP (f) (where inff is over all measurable func-

tions).

x1

x1

x1

x2

x2

X1

X1

X2X2

X3

X3

X4

X4

Fig. 1 A dyadic partition (left) and a corresponding binary tree representation (right). Inter-
nal nodes of the tree are labeled by their split coordinate and external nodes by the partition
rectangle they represent.

To solve this problem we follow the approach of Blanchard et al. [2] which chooses T̂X

to minimize a regularized empirical risk function. Our development requires that we

decompose the problem into operations over dyadically constructed subsets of X. To

this end we define σk(X) = {X1, X2, ...} to be the set of all rectangles that appear

in the dyadic partitions of X represented by the trees in Tk. For X́ ∈ σk(X) we

define Tk(X́) to be the class of dyadic classification trees that appear as a sub-tree

of a tree in Tk with root rectangle X́. We adopt a slightly generalized definition of

empirical classification error that allows us to specify a different loss value for each

class assignment of each data sample. To this end we define a weighted data set to be

a collection of pairs D̄ = ((x1, w1), ..., (xn, wn)) where xj ∈ X, wj ∈ ℜ
|Y |
+ and wjy

represents the loss incurred when label y is assigned to xj . We assume that the weight

vectors are normalized so that

n
X

j=1

wjy = 1 − P̂y, y ∈ Y

where P̂y is the empirical class marginal probability for class y (e.g. P̂y is the fraction of

samples that belong to class y). For example, if the classification problem in Definition

1 has two classes then the weight vector for a sample from class 1 would be (0, 1/n).
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In later sections we will replace samples with duplicate x values by a single surrogate

sample whose weight vector components take the form k
n for some integer k.

Define the empirical error eD̄ of a tree T
X́

∈ Tk(X́) to be the sum of losses over

the samples from D̄ that occupy the rectangle X́,

eD̄(T
X́

) :=
X

j:xj∈X́

wjT
X́

(xj).

Define the corresponding regularized empirical risk

rλ(T
X́

) := eD̄(T
X́

) + λ|T
X́
|

where λ ≥ 0 is the regularization parameter and |T
X́
| is the number of leaves in T

X́
.

When each sample (xj , yj) in D is converted to a sample (xj , wj) in D̄ using

wjy =



0, y = yj

1/n, y 6= yj

then eD̄ represents the standard (unweighted) empirical classification error, and with

X́ = X the corresponding risk rλ(TX) represents the regularized empirical risk we seek

to minimize.

Under some very general assumptions on P , Blanchard et al. show that with a

suitable choice of λ, if T̂ is a solution to

min
TX∈Tk(X)

rλ(TX) (1)

then the excess error satisfies

E
h

eP (T̂ ) − e∗P

i

≤ 2 inf
T∈Tk

`

eP (T ) − e∗P + 2λ|T |
´

+
c

n

where the expectation E is over (i.i.d.) data collections D. This result tells us that on

average, as n goes to ∞, the excess error of a regularized empirical risk minimizer is

bounded by the excess error of a distributional risk minimizer plus a corresponding

regularization value (which we expect to be small). To implement this approach we

must address the following issues: how to solve (1), how to choose λ, and how to

choose k.

Blanchard et al. develop a dynamic programming algorithm for solving (1). With

ki ∝ log n, ∀i they establish lower and upper bounds on the run time (and memory us-

age) that are dominated by the exponential term (log n)d. This prevents the algorithm

from being practical for large data sets or dimensions larger than about 10. Neverthe-

less this algorithm has proven very effective, e.g. it typically produces smaller and more

accurate decision trees than C4.5 [2]. We develop a simple recursive algorithm whose

run time (and memory usage) obeys the same worst case upper bound, but possesses a

much smaller (polynomial-time) lower bound. In practice the run time is often some-

where in-between and, unlike the previous dynamic programming algorithm, depends

on the value of λ.

The most common approach for determining the regularization parameter λ is

to search a finite grid of values for one that minimizes a cross-validation (or hold-out)

error. However solutions to (1) can be very sensitive to λ and therefore easily overlooked

with a uniform grid search. We describe a finite (unequally spaced) grid that can be

computed ahead of time and is guaranteed to yield optimal solutions for all distinct
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(error, tree size) pairs that can be realized by minimizing the regularized risk. We

also describe adaptive algorithms for efficiently searching this grid, and describe a

computationally efficient way of integrating this search with our recursive algorithm

for solving (1).

The choice of k represents a trade-off between the richness of the function class

Tk and the computational requirements for solving (1). We develop a computationally

efficient algorithm that automatically chooses a value for k that is reasonably small,

but still includes trees in Tk that achieve the minimum possible empirical classification

error.

The next four sections describe the recursive algorithm for solving (1), the adaptive

grid search for λ, the algorithm for choosing k, and the specific data structures used to

implement these algorithms. Appendix A provides a description of the data sets used

in the experiments throughout this paper. All proofs for the lemmas in these sections

can be found in Appendix B.

3 A Memoized Recursive (MR) Algorithm for Minimizing rλ

When λ is fixed and k is finite the optimization problem in (1) can be solved, in

principle, by exhaustive search. However, since |Tk(X)| = Θ(2
Pd

i=1(ki+1)) (see below)

this approach is only practical for small values of d and k. To develop a more practical

algorithm we must exploit the structural properties of this problem.

To begin we note that the empirical error e, number of leaves |T |, and risk r are

all values that can be decomposed into sums over sub-trees. For example, the risk of a

tree is the sum of the risk of its left and right sub-trees, and by recursive application

of this property the tree risk can also be expressed as the sum of the risks of its leaf

nodes. Thus, for a fixed partition TX , the minimum empirical error (and therefore the

minimum risk) is obtained by assigning labels to the leaf nodes that correspond to

the winner of a (weighted) majority vote over the data samples that occupy the leaf

rectangle (where ties are resolved using a suitable tie-breaking strategy, e.g. choosing

one of the tied labels at random). For convenience we also assign labels to internal

nodes using the same strategy, i.e. using a (weighted) majority vote over the samples

that occupy the node rectangle. Tree nodes that contain no data samples are assigned

the label of the closest occupied ancestor node. All of the algorithms in this paper

adopt this majority vote rule to determine the labels for tree nodes (both internal and

external).

With λ fixed we define an optimal tree over X́ ∈ σk(X)

T ∗
λ,X́

∈ arg min
T

X́
∈Tk(X́)

rλ(T
X́

) (2)

and its corresponding optimal error and risk values

e∗
λ,X́

:= eD̄(T ∗
λ,X́

), (3)

r∗
λ,X́

:= rλ(T ∗
λ,X́

). (4)

It is easy to prove that an optimal tree T ∗
λ,X́

is composed of optimal sub-trees [23].

Combining this result, the additive property mentioned above, and the fact that there

are only d possible splits at any given node allows us to conclude that an optimal tree
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over X́ is either the single node tree T 0
X́

corresponding to the rectangle X́ with no splits,

or one of the d trees formed by making a dyadic split along one of the d coordinates

and attaching the corresponding optimal left and right sub-trees. This leads to the

following recursive expression for the optimal risk

r∗λ,X = min
“

rλ(T 0
X), r∗λ,L1(X) + r∗λ,R1(X),

r∗λ,L2(X) + r∗λ,R2(X), ... , r∗λ,Ld(X) + r∗λ,Rd(X)

” (5)

and suggests the simple recursive algorithm in Procedure 1 (which is invoked with

X́ = X).

Procedure 1 A simple recursive algorithm for designing an optimal dyadic decision

tree.

1: ODDTDesign (X́, D̄)
2:
3: {check for empty rectangle}

4: if (X́ ∩ D̄ = ∅) then

5: T
X́∗
← empty leaf node

6: Return(T
X́∗

)
7: end if

8:
9: {initialize as a leaf node}

10: T ∗
X́
← T 0

X́

11: r∗
λ
← rλ(T 0

X́
)

12:
13: {search over coordinates for the best split}
14: for (i = 1, 2, ..., d) do

15: if ((number of splits for coordinate i) < ki) then

16: split X́ into Li(X́) and Ri(X́)
17: {determine optimal sub-trees}

18: T ∗
Li(X́)

← ODDTDesign(Li(X́))

19: T ∗
Ri(X́)

← ODDTDesign(Ri(X́))

20: {save best split}

21: if
“

rλ

`

T ∗
Li(X́)

´

+ rλ

`

T ∗
Ri(X́)

´

< r∗
λ

”

then

22: r∗
λ
← rλ

`

T ∗
Li(X́)

´

+ rλ

`

T ∗
Ri(X́)

´

23: T ∗
X́
← tree formed by attaching T ∗

Li(X́)
and T ∗

Ri(X́)
to T 0

X́

24: end if

25: end if

26: end for

27:
28: Return(T ∗

X́
)

Procedure 1 considers all possible combinations of splits and therefore visits ev-

ery occupied rectangle of every size in σk(X). However it also considers all possible

sequences of combinations, and consequently visits many rectangles multiple times, re-

computing the corresponding optimal sub-trees each time. For example Procedure 1

would visit rectangle X4 in Figure 1 via three different split sequences: R1L2R1 (as

suggested in the figure), R1R1L2 and L2R1R1. This happens because our recursive

problem decomposition contains “overlapping sub-problems” which lead to redundant
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computation in the corresponding recursive algorithm. Blanchard et al. show how to

eliminate this redundancy by using a dynamic programming (DP) approach which

solves the problem from the bottom up rather than the top down. More specifically,

the DP algorithm starts at the lowest possible tree level (corresponding to the smallest

possible rectangles), and works its way up one level at a time until it reaches the root,

computing optimal sub-trees at each level and storing them for use at the next highest

level. The DP algorithm eliminates computational redundancy by storing intermediate

results and retrieving them at a later point in the algorithm. This same thing can be

accomplished using a so-called memoized recursive (MR) algorithm ([4], Section 16.2)

which employs the top down recursion in Procedure 1, stores optimal sub-trees when

they are first encountered, and then retrieves them at a later point (thereby avoiding

the recursive call that would compute them again). This requires the following sim-

ple modifications to Procedure 1: add a command at line 27 that stores the optimal

sub-tree that has just been computed, and add commands before the recursive calls on

lines 18 and 19 that check to see if the optimal sub-trees have already been computed

and can be retrieved from storage. In addition, rather than store an entire sub-tree

each time it is sufficient to store the corresponding root rectangle along with pointers

to its left and right child rectangles (which are root rectangles for other stored entries).

Both the DP and MR algorithms consider all possible combinations of splits, and

therefore visit the exact same number of rectangles, and store (and retrieve) the exact

same optimal sub-trees. Furthermore, the operations performed within each recursive

call are very similar to the operations performed each time the DP algorithm visits

a rectangle. Thus, the computational requirements of these two algorithms are essen-

tially the same (both memory and run time). The primary advantage of the memoized

recursive algorithm is that, because it works from the top down, it allows a looka-

head pruning scheme (described next) that can substantially reduce the computational

requirements.

The idea behind lookahead pruning is to avoid computing optimal sub-trees that

cannot improve the current solution. One of the simplest ways to do this is to avoid the

search over individual coordinate splits in lines 14-26 of Procedure 1 when the initial

“leaf node” risk rλ(T 0
X́

) cannot be improved. The next lemma provides a simple test

that identifies this case.

Lemma 1 (sub-tree improvement bound) Let X́ ∈ σk(X) and define T 0
X́

to be

the single node classifier that assigns the same label to all points in X́ using a ma-

jority vote rule over samples from D̄. Then for any λ > eD̄(T 0
X́

) the solution to

arg min
T

X́
∈Tk(X́)

rλ(T
X́

) is T 0
X́

.

Given this lemma, the lookahead pruning strategy can be implemented by inserting a

test for eD̄(T 0
X́

) < λ at line 12 in Procedure 1 and skipping the search over coordinates

if the test is true. The computational savings obtained using this simple strategy can

be quantified by the improvement ratio, which is the ratio of the number of rectangles

visited by the DP algorithm (or equivalently the MR algorithm without pruning) to the

number visited by the MR-with-pruning (MRP) algorithm. Figure 2 plots the number

of rectangles versus λ for the thyroid data set2. For larger λ the improvement ratio is

dramatic (i.e. several orders of magnitude), while at smaller λ the improvement ratio

shrinks to 1. At the rule of thumb λ = 2/n the improvement ratio is approximately 4.8.

The average improvement ratio across all λ values is 3.3. Here we have used a complete λ

2 The data sets used throughout this paper are described in detail in Appendix A.
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grid that is guaranteed to produce all “distinct solutions” realizable with this approach

(see Section 4), which includes numerous solutions produced by smaller λ values that

overfit the data. Grid searches that are able to avoid these smaller λ values, e.g. the

so-called early stopping methods, will have a much higher average improvement ratio.

Table 1 shows average improvement ratios for several data sets. The fourth column
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Fig. 2 The results in this plot are obtained using the thyroid data set with all n = 215
samples. This plot shows the number of rectangles visited by the DP and MRP algorithms as
λ varies over a grid of values determined by the algorithm in Section 4. At λ = 2/n = .0093
pruning reduces the number of rectangles by approximately 4.8.

shows the improvement ratio averaged across λ grid values (where a “complete” λ grid

has been used in all cases), and the sixth column shows improvement ratio statistics

computed across resampled training sets with λ = n/2. The results in this table show

remarkable improvement for such a simple pruning strategy.

Table 1 For each data set, d is the dimension, ndesign is the total number of data samples
available for design, and n the number of samples in the resampled data sets. The fourth
column shows the average improvement ratio across all λ grid values when the MRP algorithm
is applied to the ndesign samples. The sixth column shows the minimum, mean, and maximum
improvement ratios across the resampled data sets with λ = n/2 (the rule of thumb).

Improvement Ratio
Improvement Ratio for λ = 2/n

Data Set d ndesign for λ grid search n (min mean max)
banana 2 5300 3.5 400 (1.6 2.8 4.4)

breast cancer 9 277 1.7 200 (2.4 3.6 6.4)
diabetes 8 768 1.6 468 (2.3 2.5 2.8)

flare-solar 9 1066 2.4 666 (1.7 2.0 2.7)
thyroid 5 215 3.3 140 (1.9 3.9 7.7)
titanic 3 2201 1.2 150 (1.0 1.3 2.9)

Spambase 4 3601 2.2 3301 (3.9 4.1 4.3)
Intrusion 4 49403 7.5 44463 (3.3 5.1 7.5)

Mushroom 10 6124 4.2 4624 (1.2 1.2 1.2)
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4 Algorithms for λ

Blanchard et al. [2] suggest that the regularization parameter take the form λ = κ/n,

and they show good empirical results for 1 ≤ κ ≤ 4. They also suggest a rule of thumb

that chooses κ = 2 for a 2-class classification problem [2]. A more robust approach, and

a common method for determining tuning parameters in practice, is to choose λ (or

equivalently κ) to minimize a cross-validation (or hold-out) error. This usually involves

searching a finite grid of parameter values which is determined heuristically. In this

section we develop a principled approach to this search. In particular we develop tight

upper and lower bounds on the interval of search, describe a finite (unequally spaced)

grid of values that can be computed ahead of time and is guaranteed to yield optimal

solutions for all solution values (e, |TX |) that are realizable by minimizing rλ, describe

adaptive algorithms for efficiently searching this grid, and describe a computationally

efficient way to integrate this search with the MRP algorithm in Section 3.

We note that the approach taken here is directly analogous to the optimal pruning

procedure in CART [3]. Both cases seek a suitable value of λ for the criterion rλ, but

the class of trees considered by the CART pruning algorithm obeys a very convenient

nesting property, while the (typically) much larger class Tk(X) considered here does

not. Consequently the development here is a bit more general and the algorithms are

a bit more technical.

We start by formalizing our intuition that minimizing rλ over a sequence of de-

creasing λ values will generate a sequence of decision trees with decreasing error and

increasing size. To this end we state the following monotonicity Lemma.

Lemma 2 (monotonicity in λ) Using the definitions in (2-4) the following inequalities

hold for any 0 ≤ λ1 < λ2

r∗λ1,X ≤ r∗λ2,X

e∗λ1,X ≤ e∗λ2,X

|T ∗
λ1,X | ≥ |T ∗

λ2,X |

Having established monotonicity for different λ values we now give a rule for choosing

a unique-valued solution for a fixed λ value.

Definition 2 (selection criterion) Let T ∗
k,λ(X) = arg minTX∈Tk(X) rλ(TX) be the

solution set for regularization value λ. Select the solution T ∗
λ,X to be any member of

T ∗
k,λ(X) with the largest number of leaves3.

This definition allows us to define a unique sequence of solution values as λ is varied

continuously from 1 to 0 (later in this section we will show that the range 0 ≤ λ ≤ 1

is sufficient to generate all possible solutions).

Definition 3 (solution-value-sequence) Define the two-tuple (e∗λ,X , |T ∗
λ,X |) to be

the solution value for a solution T ∗
λ,X given by Definition 2. Define the solution-value-

sequence (e1, l1), (e2, l2), ... to be the sequence of distinct solution values generated as

λ is varied continuously from 1 to 0.

3 Alternatively we could select the member with the smallest number of leaves, but this
would introduce a slight change in Lemma 3 below: the strict and non-strict inequalities in (6)
would change places.



10

We now develop a characterization of this sequence and its members. First recall that

the sample weight vector components are either 0, 1
n , or k

n , where k
n corresponds

to cases where duplicate samples are replaced by a surrogate. Because the number of

distinct error values is no more than n this sequence will contain no more than n values.

In practice the number of values is often much smaller than n as illustrated in Table

2. Next, although the number of occupied leaves in any given tree can be no larger

than n, the total number of leaves (i.e. the sum of occupied and unoccupied leaves)

can exceed n. Furthermore it is difficult to obtain a non-trivial bound on the number

of unoccupied leaves a priori, since several dyadic splits may be required before a split

is located in a region where the data are concentrated. This can happen, for example,

when the data samples are concentrated near corners of the original rectangle. A crude

bound on the total number of leaves is 2
P

i ki , which corresponds to the number of

leaves in the largest trees in Tk. However once we have the data it is easy to compute

a tighter bound that we call lbound. Our approach is to set lbound equal to the number

of leaves in the minimum error tree built by a simple greedy algorithm. Because the

greedy algorithm is sub-optimal lbound is an obvious upper bound on the number of

leaves in the minimum error solutions obtained by solving [min rλ|λ=0], and therefore,

by the monotonicity result in Lemma 2, lbound is an upper bound on the number of

leaves in solutions to
ˆ

min rλ|λ≥0

˜

(i.e. solutions for all λ). In this paper we compute

lbound using a simple greedy algorithm that builds a tree by recursively performing the

dyadic splits that maximize the single split error reduction until the minimum error is

achieved. The experimental results in Table 3 suggest that this value of lbound is often

much smaller than n, and typically no more than 5 times the number of leaves lmax

in the largest solutions to [min rλ].

Table 2 For each data set, n is the total number of samples in the data set. This table shows
the number of distinct solutions to (1) as λ is varied from 1 to 0.

Data Set n number of distinct solutions

banana 5300 71
breast cancer 277 16

diabetes 768 21
flare-solar 1066 9
thyroid 215 11
titanic 2201 4

Spambase 3601 41
Intrusion 49403 32

Mushroom 6124 8

This next lemma provides a complete characterization of λ in terms of the solution

value sequence and is the key result in our development of a grid search algorithm for

λ.

Lemma 3 Given a solution-value-sequence (e1, l1), (e2, l2), ..., (em, lm), define (e0, l0) :=

(2e1, 0) and (em+1, lm+1) := (0,∞). Then, for i ∈ {1, 2, ..., m}, a solution with solu-

tion value (ei, li) can be obtained by solving minTX∈Tk(X) rλi
(TX) with any value of

λi satisfying
ei − ei+1

li+1 − li
< λi ≤

ei−1 − ei

li − li−1
. (6)
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Corollary 1 All values in the solution-value-sequence can be realized by minimizing

rλ with λ values in the interval 0 < λ ≤ e1 < 1.

This lemma reveals several important properties. First,
ei−1−ei

li−li−1
represents a progress-

to-cost ratio, where progress is measured in terms of error reduction and cost in terms

of the additional number of leaves required to achieve this reduction. The lemma above

tells us that λ is a lower bound on this ratio. Basic guidelines from learning theory

suggest that small values of this ratio may lead to overfitting. More specifically, the

general notions that “learning is compression” and “memorizing the data can lead to

poor generalization” suggest that this ratio should be no smaller than approximately

1/n for good generalization. This is consistent with the empirical results in [2] that

show the best generalization for λ ≥ 1/n. This lemma also tells us that this progress-

to-cost ratio is monotonic in the solution sequence. This implies for example that

if the data is distributed so that only a large tree can give a large error reduction,

e.g. a checkerboard data distribution, then this large tree will be the first non-trivial

solution in the sequence. Finally this lemma shows how the λ-value intervals can vary

dramatically in size. Often we expect larger error reductions from the initial tree size

increases, suggesting larger interval sizes for larger λ values. Figure 3 plots the number

of leaves versus λ for solutions to (1) with the diabetes data set (note that the λ axis is

plotted on a log scale). This plot confirms that the λ-interval sizes vary dramatically,

and that the largest coincide with large λ values. These observations suggest that a λ-

search that uses a uniform grid (even with log-λ scaling) is likely to either be inefficient

(large number of grid points), overlook specific solution values (small number of grid

points), or both. Next we develop a λ-search that uses an adaptive grid derived from

the result in (6).
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Fig. 3 The results in this plot are obtained using the diabetes data set with all n = 768
samples. We plot the number of leaves versus λ for solutions to (1). Note that the λ axis is
plotted on a log scale and that 2/n = .0026 for this data set.

If we knew the solution-value-sequence ahead of time then Lemma 3 would give

us a way to compute a complete set of optimal trees by solving (1) with one λ value
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selected from each interval in (6). For example it would be sufficient to choose

λi =
ei−1 − ei

li − li−1
, i = 1, 2, ..., m.

However we don’t know the solution values ahead of time. Nevertheless, they can take

only a finite number of values. Indeed, ∆e = (ei−1 − ei) can take at no more that n

values (often much less) and ∆l = (li−li−1) can take no more than lbound values. Thus,

one approach is to compute the ratio ∆e/∆l for all O(nlbound) combinations of ∆e and

∆l, remove any duplicates, and then step through the values in this λ-list from largest

to smallest, computing solutions to (1) as we go. This is guaranteed to find solutions for

all distinct solution values. However it will also recompute the same solutions numerous

times (because it will visit numerous λ values of from each interval in (6)). Some of this

redundancy can be avoided by recomputing a smaller λ-list each time a new solution

value is encountered, since every new solution reduces the number of possibilities for the

remaining values of ∆e and ∆l. The experimental results in columns 5 and 6 of Table

3 show that this adaptive approach yields a substantial reduction (often several orders

of magnitude) in the total number of λ values that are visited. Furthermore, the larger

λ-lists (with smaller steps) occur in the beginning where (1) can be solved with less

computation (because of the more aggressive lookahead pruning for larger λ values).

In this sense the λ search and lookahead pruning algorithms are complementary. Next

we develop a simple heuristic that provides an additional reduction in the number of

λ values in the search.

Definition 4 (error reduction and split ratio) For a rectangle X́ ∈ σk(X) and a

tree T
X́

∈ Tk(X́) define the error reduction to be

δ(T
X́

) := eD̄(T 0
X́

) − eD̄(T
X́

)

and the split ratio to be

g(T
X́

) :=
δ(T

X́
)

|T
X́
|

.

Lemma 4 (split ratio bound) Let T ∗
X(i − 1) and T ∗

X(i) be optimal dyadic deci-

sion trees corresponding to solution values (ei−1, li−1) and (ei, li) respectively. Let

T̄X(i) be a minimum error sub-tree of T ∗
X(i) of size |T̄X(i)| = |T ∗

X(i − 1)|, and let

T ∗
X1

(i), T ∗
X2

(i), ..., T ∗
Xm

(i) be the sub-trees that are pruned from T ∗
X(i) to obtain T̄X(i).

Then
ei−1 − ei

li − li−1
≤

Pm
j=1 δ(T ∗

Xj
(i))

P

j |T
∗
Xj

(i)|
≤ max

j∈{1,...,m}
g(TX∗

j
(i)).

Although the MRP instance that determines the current solution T ∗
X(i − 1) has

no obvious way to determine the sub-trees T ∗
Xj

(i) of the next solution, it may visit

them during its search. Indeed, it visits numerous sub-trees that are sub-optimal for

the current value of λ, but are candidates for inclusion in optimal trees for smaller

values of λ. This motivates the following heuristic for adaptively choosing the next λ

value during the λ grid search. Compute the split ratio of every non-optimal sub-tree

visited during the current MRP instance and choose the next λ value to be the largest

split ratio that is less than the current λ value. If there is no split value satisfying
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this criterion then choose the next value in the adaptive λ-list as before. It is easy

to add this heuristic to the MRP algorithm since the visited non-optimal sub-trees

are simply the sub-trees not chosen in the local search over the d + 1 candidates in

each recursive call. The experimental results in columns 6 and 7 of Table 3 show that

this adaptive+heuristic method yields a substantial reduction (often several orders of

magnitude over the adaptive method alone) in the total number of λ values visited.

This heuristic is somewhat conservative in that it is very likely to choose a next λ

value that is greater than or equal to the desired value as long as the current instance

of MRP explores a sufficiently rich collection of non-optimal sub-trees. Thus, it will

only skip over distinct-solution λ intervals if the current instance of MRP fails to visit

an appropriate collection of non-optimal sub-trees. The parenthetic results in the last

two columns of Table 3 suggest that this is a rare case. It only happens with three of

the nine data sets, and in these cases skips only 1, 2, and 4 intervals.

Table 3 For each data set, d is the dimension, n is the total number of samples in the data
set, lbound is the number of leaves in a minimum error tree built by a simple greedy algorithm,
and lmax is the number of leaves in the largest solution produced by the MRP algorithm. The
“original λ-list” column shows the number of distinct λ values determined by computing the
ratio ∆e/∆l for all O(nlbound) combinations of ∆e and ∆l. The “adaptive search” column
shows the number of λ values visited by the adaptive method that recomputes a smaller λ-list
each time a new solution value is encountered. The last column shows the number of λ values
visited by the adaptive+heuristic algorithm described in the text. The parenthetic values in
the last two columns represent the total number of distinct solutions found with these searches.

Number of λ values
adaptive+

original adaptive heuristic
Data Set d n lbound lmax λ-list search search

banana 2 5300 1493 1078 2,152,240 141,130 (71) 309 (71)
breast cancer 9 277 210 75 9391 1027 (16) 88 (14)

diabetes 8 768 472 207 75,740 11,656 (21) 354 (20)
flare-solar 9 1066 150 35 2569 106 (9) 56 (9)
thyroid 5 215 59 26 2319 167 (11) 74 (11)
titanic 3 2201 9 6 28 9 (4) 6 (4)

Spambase 4 3601 2701 581 543,242 38,479 (41) 758 (37)
Intrusion 4 49403 645 159 360,717 3425 (32) 653 (32)

Mushroom 10 6124 33 9 12804 197 (8) 95 (8)

5 Algorithms for k and Data Compression

It may appear that the top down nature of the MRP algorithm eliminates the need

to specify k (the maximum number of splits per dimension). However it is easy to

verify that if D contains duplicate x samples with different y values then without k the

MRP algorithm could end up exploring an infinitely long tree branch. This situation is

easily resolved by terminating the recursive calls when a node’s x values are all equal.

However a similar behavior (i.e. exploring a very long tree branch) can occur when D

contains a group of x values that are sufficiently close together. If we allow this type of

behavior then we can eliminate the need for k altogether. However by retaining k we

can prevent this type of behavior, and at the same time create an extremely efficient
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supporting data structure for MRP (see Section 6), and incorporate a data compression

pre-processing step that can significantly improve the run time.

Our choice of k represents a heuristic trade-off between the richness of the function

class Tk and the computational requirements for solving (1). In this section we develop

a computationally efficient algorithm that automatically chooses a value for k that

is reasonably small, but still includes trees in Tk that achieve the minimum possible

empirical classification error.

We start by replacing duplicate samples, i.e. groups of samples that have the same x

value, by a surrogate sample that has the same x value and a surrogate weight vector.

The surrogate weight vector is formed by summing of the duplicate sample weight

vectors and then translating, by subtracting the minimum component value from each

component, so that the resulting vector has a minimum component value of zero. This

gives a minimum loss of zero for every data sample, which shifts the risk value but

does not change the minimum risk solution set. The minimum achievable empirical

classification error is zero after this step. An efficient implementation of this step can

be obtained by filtering the data samples one coordinate at a time. Starting with

the first coordinate we sort, scan, group duplicate values, and discard non-duplicate

values. Then, using only the samples with duplicate first coordinate values, we repeat

the process with the second coordinate values, and so on with the other coordinate

values until we have filtered the samples along all d coordinates. The samples in the

final collection of “duplicate groups” are replaced by surrogates as described above.

This step performs a total of d sorts and scans, each with no more than n values, and

so has run time O(dn log n).

Once we’ve replaced duplicates a conservative way to guarantee that Tk contains

trees that achieve zero empirical classification error is to choose each ki separately to

be the minimum number of dyadic splits that partition the ith coordinate into zero-

loss intervals (i.e. intervals where labels can be assigned so that the loss is zero for all

samples in each interval) [2]. If the distribution of X has a bounded density with respect

to the Lebesgue measure then this should yield ki on the order of log n [2], but smaller

values of k can be obtained by considering splits along all d coordinates simultaneously.

We describe a simple two step approach. The first step finds the smallest value of k0

such that the partition produced by splitting all d coordinates into 2k0 equal size

intervals contains only zero-loss rectangles. For each value of k0 = 1, 2, ... this zero-

loss test requires O(ndk0) computation (i.e. dk0 computations to determine the leaf

rectangle occupied by each of the n samples, and then no more than n additional

computations to determine of the loss values for each occupied leaf), and so if k∗0 is

the final value the total run time is O(ndk∗0
2
). Thus, when k∗0 = O(log n) the run time

is O(nd(log n)2). The second step then selects ki for each coordinate i separately by

keeping the smallest value from {0, 1, ..., k∗0} that realizes the same partition of the

data samples as the partition formed by ki = k∗0 . This second step obeys the same run

time bound as the first.

Table 4 shows the results of designing k with this method where column 3 shows

the range of k values obtained over the resampled data sets. The values of k appear

to be reasonably stable across data sets, and in many cases are surprisingly small.

Column 3 also compares these values with the range of component values reported in

[2] (shown in the square brackets). The values obtained with our automated method

were generally the same or smaller.

Once k has been determined the data can be compressed as follows. Consider the

zero-loss rectangles produced by splitting each coordinate i into 2ki equal size intervals.
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All data samples that occupy the same zero-loss rectangle are replaced by a surrogate

sample whose x value is the mean of the individual x values, and whose weight vector

is the sum of the individual weight vectors. This yields a compressed data set that can

be used as input to the MRP algorithm without changing the minimum risk solution

set.

The last column in Table 4 shows statistics for the compressed data set sizes com-

puted over the resampled data sets. These sizes represent a combination of the com-

pression obtained by replacing duplicates and replacing samples that occupy the same

zero-loss rectangles. In some data sets there is little effect, but with others there is a

dramatic reduction in the number of samples (e.g. an order of magnitude), which in

turn leads to significant computational savings in the MRP algorithm. Perhaps the

most intriguing results are obtained with the titanic data set which is compressed to

only 9 samples an average.

Table 4 For each data set, d is the dimension and n the number of samples in the resampled
training sets. This table summarizes results computed across the resampled data sets. Column
3 shows the results of the automatic method for determining k. The square brackets show the
range of component values reported in [2]. *For the diabetes data set the automatic method
gave k = (4, 4, 4, 4, 4, 4, 4, 4), but we were forced to reduce to k = (3, 3, 3, 3, 3, 3, 3, 3) because of
the excessive memory requirements. Column 4 shows the results of the two step compression
process that starts by replacing duplicates and then, after k has been determined, replacing
samples that occupy the same zero-loss rectangles.

ń
Data Set d n k (min mean max)

banana 2 400 (6-10, 6-10) [14] 372 395 400
breast cancer 9 200 (3, 2, 3-4, 3-4, 1, 2, 1, 3, 1) [1-4] 178 186 194

diabetes 8 468 (3, 3, 3, 3, 3, 3, 3, 3)* [3] 445 454 463
flare-solar 9 666 (1, 2, 2, 1, 1, 1, 3-4, 2-3, 1-2) [1-3] 72 81 91
thyroid 5 140 (3-5, 3-5, 3-5, 3-5, 3-5) [5-6] 62 123 140
titanic 3 150 (1-2, 1, 1) [1-2] 5 9 14

Spambase 4 3301 (10, 11, 15, 13) 1651 1664 1674
Intrusion 4 44463 (10-11, 10-11, 10-11, 10-11) 7640 7719 7764

Mushroom 10 4624 (2, 2, 2, 2, 2, 2, 2, 2, 2, 2) 728 735 742

6 Data Structures

Both the dynamic programming and memoized recursive algorithms require a database

S for insertion and retrieval of optimal sub-trees. Rather than store an entire sub-

tree in each database entry it is sufficient to store the corresponding root rectangle

along with pointers to its left and right child rectangles (which are root rectangles

for other database entries). Blanchard et al. use a dynamic dictionary database which

performs insertions and retrievals in O(log |S|) time [2]. However these rectangles are

more naturally stored in a hash table database. This is largely because they possess a

simple integer representation that can be used either to index the hash table directly,

or to develop a natural class of hash functions that are universal [4] and therefore

guarantee O(1) expected run time for insertions and retrievals.

This integer representation can be developed as follows. The complete set of dyadic

intervals for coordinate i can be represented by the nodes of a complete binary tree
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with 2ki leaves. Therefore the exact number of such intervals is 2ki+1 − 1 and so they

can be uniquely represented by a (ki+1)-bit integer. This gives exactly
Qd

i=1(2
ki+1−1)

total rectangles in σk(X) which can be uniquely represented by a
“

Pd
i=1(ki + 1)

”

-bit

integer. If
Pd

i=1(ki + 1) is sufficiently small then this integer can be used to index

hash table entries directly so that insertions and retrievals are performed in O(1) time.

This is what happens with the banana and titanic data sets. On the other hand, if
Pd

i=1(ki+1) is too large we can still use this integer representation to develop a natural

class of hash functions that are universal [4], and therefore guarantee an expected run

time of O(1) for insertions and retrievals.

Given the rectangle X and the vector k, a rectangle X́ ∈ σk(X) can be uniquely

represented by the integer pairs (p1, q1), ..., (pd, qd) where pi, qi ∈ {0, ..., 2ki} are indices

of the left and right endpoints of the ith coordinate interval for X́. For example, with

k = (2, 1) the rectangle X3 in Figure 1 can be uniquely represented by the pairs

(2, 3), (1, 2), and with k = (3, 3) this same rectangle would be represented by the

pairs (4, 6), (4, 8). A more compact representation can be obtained by replacing each

“endpoint index pair” with an “endpoint index sum”, giving rise to the endpoint index

sum vector (s1, ..., sd), si = pi + qi. For example, with k = (2, 1) and k = (3, 3) the

rectangle X3 is uniquely represented by the sum vectors (5, 3) and (10, 12) respectively.

The uniqueness of this representation is a consequence of the dyadic splits4 . The values

si are examples of the (ki+1)-bit integer representations for dyadic intervals mentioned

above, and their concatenation is an example of a unique integer representation for

rectangles. Now consider a hash table S where |S| is a prime number larger than the

number of rectangles to be stored in the table. Then if the integer values ui, i = 1, ..., d

are chosen randomly according to a uniform distribution over {0, ..., |S| − 1} the hash

function

h(X́) :=

 

d
X

i=1

uisi

!

mod |S|

is a member of a universal class of hash functions, and therefore the expected number

of times the hash value of any two members of σk(X) will be the same is less than 1

[4]. Thus the expected run time for insertions and retrievals, over random samplings

of (u1, ..., ud), is O(1).

In our case it is easy to determine a suitable value for the hash table size |S| ahead of

time. First we know that it will never be required to store more than |Tk| = |σk(X)| =
Qd

i=1(2
ki+1 − 1) rectangles. However we can often compute a tighter upper bound on

the storage as follows. Blanchard et al. prove that when ki = k0, ∀i the number of

rectangles occupied by a specific data sample is exactly ρ = (k0 + 1)d. The same proof

technique can be used to establish the more general result ρ =
Qd

i=1(ki + 1) when

the values of ki are possibly different. Thus ńρ (where ń is the size of the compressed

data set) is a simple (and often tight) bound on the total number of rectangles. With

this it is sufficient to choose |S| to be the smallest prime number that is larger than

min(ńρ, |Tk|).

Table 5 shows statistics for |Tk| and ńρ computed across the resampled data sets. It

also shows the statistics for the actual number of rectangles stored by the MRP instance

4 To verify that the endpoint index sum vector is a unique representation of the rectangle
we show how it can be used to uniquely reconstruct the two endpoint indices: pi = (si −∆)/2
and qi = (si + ∆)/2 where ∆ is the smallest nonzero term bj2

j from the binary expansion

si =
Pki

j=0 bj2
j , bj ∈ {0, 1}.
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that is invoked with the smallest λ value, i.e. the instance that visits the maximum

number of rectangles and therefore places the highest demand on the storage data

structure. For every data set except titanic the value ńρ is a much tighter bound on

storage than |Tk|, and in all cases the value min(ńρ, |Tk|) leads to a reasonable and

practical choice for the hash table size.

Table 5 This table shows statistics for |Tk|, ńρ, and the actual number of rectangles stored in
the hash table. In all cases the MRP algorithm was invoked with λ = 1/nlbound to maximize
the number of stored rectangles. The symbol B is used to represent a number that is greater
than 6 orders of magnitude larger than the largest ńρ row entry.

|Tk| ńρ Number of Rects.
Data Set (min mean max) (min mean max) (min mean max)

banana (16 680 4190) (18 32 48) (2.1 4.3 6.4) ×103

breast cancer (67 156 286) (3.3 4.3 5.6) (1.5 2.1 3.0) ×106

diabetes (256 256 256) (2.9 3.0 3.0) (1.1 1.2 1.4) ×107

flare-solar (13 59 129) (2.7 5.2 7.5) (1.2 2.3 3.7) ×105

thyroid (7.6 2500 9900) (.6 5.3 10.9) (.15 .84 1.8) ×105

titanic (27 42 63) (40 86 168) (19 37 59) ×100

Spambase (B B B) (49 49 49) (8.1 8.3 8.7) ×106

Intrusion (B B B) (112 146 161) (2.3 2.8 3.0) ×106

Mushroom (282 282 282) (43 43 44) (5.1 5.1 5.2) ×106

The hash table implementation of S requires a method for collision resolution. We

adopt a method that stores all rectangles that hash to the same location in a linked

list, and then resolves collisions by searching the list. Table 6 provides statistics on

the length of these lists computed across all occupied hash table locations and all

resampled data sets. As expected the average list size is always less than 2, confirming

the universal hash property mentioned above. Since S typically has a large number of

entries, and the MRP algorithm requires repeated access to most of them, the ability

to quickly access a vast majority of these entries has a significant affect on the overall

run time.

7 Related Work and Conclusions

Decision trees have applicability in diverse areas such as decision table programming,

switching theory, boolean expression evaluation, machine fault location, taxonomy rep-

resentation, database management, and pattern recognition. The evolution of decision

tree design methods can be traced through a collection of survey articles that span

nearly four decades of work [14,10,19,11]. Decision tree design problems are roughly

characterized by the following ingredients:

– the way the tree is used (e.g. to represent or summarize an existing finite data set,

or to make predictions about future data drawn from a potentially infinite set),

– the criterion used to assess the tree quality (e.g. the size of the tree, the depth of

the tree, the cost of individual variable components, or the regularized risk)

– the characteristics and constraints of the tree class (e.g. the number of children per

node (binary or m-ary), the number of components used in the split rule (univari-

ate or multivariate), and possible constraints on the split position (unconstrained,

dyadic))
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Table 6 For each data set, d is the dimension and n the number of samples in the resampled
training sets. This table shows the average hash table linked list size computed across all
occupied hash table locations and all resampled data sets. In all cases the MRP algorithm
was invoked with λ = 1/nlbound to maximize the number of stored rectangles. *In the banana
and titanic data sets the total number of potential splits was small enough that exact hashing
(with no collisions) was possible.

Linked list size for
occupied hash locations

Data Set d n (min mean max)

banana 2 400 1 *
breast cancer 9 200 1.45 1.66 2.30

diabetes 8 468 1.33 1.53 1.79
flare-solar 9 666 1.00 1.07 1.83
thyroid 5 140 1.00 1.04 1.23
titanic 3 150 1 *

Spambase 4 3301 1.03 1.04 1.05
Intrusion 4 44463 1.03 1.04 1.05

Mushroom 10 4624 1.13 1.18 1.31

The greatest emphasis has been placed on binary trees with univariate split rules and

unconstrained split positions. In most cases it is NP-Hard to find an optimal tree. Thus,

algorithms that produce optimal trees are only practical for small problem instances, or

instances where the data has special structure. Nevertheless, it is often possible to de-

rive optimal tree algorithms that are much faster than brute force search, and therefore

turn out to have practical utility. Early work in this direction used a branch-and-bound

(BB) approach to build decision table representations with minimum storage (smallest

tree) or minimum average access time (balanced tree) [17,18]. Subsequent work showed

how to improve efficiency, extend to prediction problems, and incorporate a broader

class of optimization criteria through the use of dynamic programming methods [7,9,

20,13,8].

The computational requirements of pattern recognition problems have focused most

efforts on non-optimal methods. For example the most common design algorithms, e.g.

CART [3] and C4.5 [15,16], use a greedy splitting algorithm to construct an initial

tree followed by a pruning algorithm to produce the final tree. These algorithms are

fast, scale to large problem sizes, and work well in some important applications, but

are generally not robust to the data distribution, and can therefore produce arbitrarily

bad results ([5], Chapter 20).

Recent work with dyadic decision trees has provided a potential way to address this

weakness. The dyadic restriction on the split rule allows the construction of a simple

structural risk minimization algorithm that is guaranteed to be robust to distribution

[21–23]. Alternatively, minimizing rλ over a general class of dyadic trees also yields

robust performance guarantees [23,2] and tends to give better results in practice [2].

Blanchard et al. [2] developed a DP algorithm for this problem with upper and lower

run time bounds dominated by (log n)d. This is analogous to the O((m + 1)d) run

time of a much earlier DP algorithm for decision tables [8] (where m is the maximum

number of values taken by an individual variable).

Although DP algorithms have a significant run time advantage over BB, they re-

quire that the deepest tree level be known ahead of time (since they build the tree

from the bottom up). However the DP algorithm can sometimes be replaced by a

memoized recursive algorithm that retains the computational advantages of DP but
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builds the tree from the top down (e.g. see [4], Section 16.2). For example Nijssen et

al. use an MR algorithm to build “optimal decision tree answers” to constraint-based

queries over finite data sets [12]. In this paper we have developed an MR algorithm

for dyadic decision trees, and added a simple look-ahead pruning method that yields

a significantly smaller lower run time bound Ω(n) and provides substantial speed-ups

for most regularization parameter values.

Determining an appropriate value for the regularization parameter λ is a critical

part of the tree design process, and plays a central role in most tree pruning algorithms.

In particular the choice of λ in the ODT method is directly analogous to the choice

of λ in the CART pruning method. Indeed the CART pruning method uses the same

regularized risk rλ but explores a smaller and simpler class of trees (i.e. nested sub-

trees of the greedy tree) which greatly simplifies the search over λ. For the ODT

method we have provided a complete characterization of λ in terms of the solution

value sequence, and exploited this result to develop algorithms for searching a finite

grid of regularization parameter values that is guaranteed to yield optimal solutions

for all relevant trees sizes. Finally, we have developed an efficient hash table data

structure to support the MR-with-pruning algorithm, and have developed a collection

of data pre-processing algorithms that determine the hash table size, provide run time

enhancement through data compression, and provide additional “look-ahead pruning”

by using the components of k to limit the number of splits per dimension.
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A Data Set Descriptions

The first six data sets, banana through titanic, are the same data sets used in [2]. They are
pre-processed versions of the corresponding UCI repository [1] data sets5. Each data set has
been partitioned into “training” and “test” sets a total of 100 times by random sampling. The
“training” sets represent the 100 resampled data sets used in the experiments throughout this
paper.

The three additional data sets, Spambase, intrusion and mushroom, were included be-
cause they are considerably larger than the previous data sets. Each of these data sets was
randomly sampled a total of 10 times to obtain the resampled data sets used in the experiments
throughout this paper.

The mushroom data set was derived from the corresponding data set in the UCI repository
[1]. All 21 features of the original data are symbolic and were converted to numerical values by
assigning the values 1,2,3,... to the first, second, third, ... symbol. Although this is arguably not
the best representation, it turns out to be sufficient to give perfect (zero error) generalization
estimates for tree classifiers. It also turns out that perfect results can be obtained with only a
subset of these 21 features. In this paper we kept 10 features that appeared to work best when
applied on their own.

The Spambase data set was also derived from the corresponding data set in the UCI
repository [1]. In this paper we kept 4 of the 57 original features that appeared to work best
when applied on their own. We restricted to 4 features because the memory requirements of
our algorithm were too large otherwise (i.e. experiments with this data set were constrained
by memory requirements, not run time). Nevertheless we achieved classification errors around
11%, which is only about 4% larger than the error achievable using all 57 features. In some
applications it is worth considering a small sacrifice in performance for such a large reduction
in the number of features.

The intrusion data set was derived from the KDD Cup 1999 Intrusion Detection Competi-
tion data6. In this paper we kept 4 of the 31 original features that appeared to work best when
applied on their own. Once again we restricted to 4 features because the memory requirements
were too large otherwise, and once again we noticed only a small degradation in performance
due to this restriction.

Performance comparisons for the first six data sets are shown in Blanchard et al. [2] and
they indicate that the ODT methods tends to produce smaller and (slightly) more accurate
decision trees than C4.5. Table 7 compares the the ODT method described in this paper to the
standard CART method for the three additional data sets. The results in the table suggest that

5 The pre-processed data sets are available at http://ida.first.fraunhofer.de/projects/
bench/benchmarks.htm.

6 See http://www.sigkdd.org/kddcup/index.php?section=1999&method=task
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the ODT method tends to produce smaller trees with approximately the same classification
error as CART.

Table 7 This table compares the tree size and generalization error estimate of ODT and
CART on the three large data sets. These results represent statistics computed over 10 random
partitions of the data into “design” and “test” sets, where the design/test set sizes were
3601/1000 for Spambase, 49,403/444,618 for intrusion, and 6124/2000 for mushroom. The
CART algorithm, with the Gini split criterion and the standard pruning method (based on
10-fold cross-validation), was applied to each of the 10 design sets. The error estimates for each
of these 10 trees were computed on the corresponding test sets and the results summarized
here. For the ODT method the design sets were partitioned into “training” and “validation”
sets (approximately 90% train and 10% validation), the adaptive+heuristic grid search was
applied to the training sets and solutions that minimized the empirical classification error
on the validation set were selected. Final error estimates for the 10 selected trees were again
computed on the corresponding test sets and summarized here.

Error Estimate
ODT CART

Data Set (min mean max) (min mean max)

Spambase 0.092 0.109 0.125 0.093 0.113 0.143
Intrusion 0.0012 0.0015 0.0019 0.0014 0.0015 0.0017

Mushroom 0 0 0 0.0 0.00015 0.0015
Number of Leaves

ODT CART
Data Set (min mean max) (min mean max)

Spambase 23 50.7 77 19 66.4 233
Intrusion 44 82 156 55 92 161

Mushroom 9 9 9 29 30.6 33

B Proofs

Proof (Lemma 1) First note that if the optimal tree size is 1 then T 0
X́

is the optimal tree. We

complete the proof by assuming there is an optimal solution for λ > eD̄(T 0
X́

) with number of

leaves l∗
λ
≥ 2, and then show that this leads to a contradiction. Let r∗

λ
and e∗

λ
be the risk and

the error of the assumed optimal solution. The risk satisfies

r∗λ = e∗λ + λl∗λ
≥ λl∗λ
= λ(l∗λ − 1) + λ

> eD̄(T 0
X́

)(l∗λ − 1) + λ

≥ eD̄(T 0
X́

) + λ

where the fourth line follows from the assumption that λ > eD̄(T 0
X́

) and the last line follows

from the assumption that l∗
λ
≥ 2. Since the risk eD̄(T 0

X́
) + λ is a realizable risk value, the

inequality above contradicts the optimality assumption for r∗
λ

implying that the optimal tree
size must be 1. ⊓⊔

Proof (Lemma 2) The following abbreviated notation will be used in this proof.

ri := r∗λi,X

ei := e∗λi,X

li := |T ∗
λi,X |
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The optimality of T ∗
λi,X

for λi gives the following two inequalities,

r1 = e1 + λ1l1 ≤ e2 + λ1l2 , (7)

r2 = e2 + λ2l2 ≤ e1 + λ2l1 . (8)

Combining (7) with λ1 < λ2 yields

r1 ≤ e2 + λ1l2 ≤ e2 + λ2l2 = r2

which proves the first inequality in the theorem. Solving for (e1 − e2) in (7) and (8), and
combining the results gives

λ2(l2 − l1) ≤ e1 − e2 ≤ λ1(l2 − l1).

The combination of λ2(l2− l1) ≤ λ1(l2− l1) and 0 ≤ λ1 < λ2 imply that l2 ≤ l1 which proves
the third inequality in the theorem. Finally, the combination of e1 − e2 ≤ λ1(l2 − l1) with
λ1 ≥ 0 and l2 − l1 ≤ 0 imply e1 ≤ e2 which completes the proof. ⊓⊔

Proof (Lemma 3) The optimality of T ∗
λi,X

for λi gives

ei + λili ≤ ei+1 + λili+1. (9)

Solving for λi gives

λi ≥
ei − ei+1

li+1 − li
.

Next we show that this inequality must be strict, i.e.

λi >
ei − ei+1

li+1 − li
. (10)

Assume equality in (9) so that λi =
ei−ei+1

li+1−li
. This implies that both (ei, li) and (ei+1, li+1)

are optimal solution values for λi and since li+1 > li the selection criterion in Definition 3
will not choose (ei, li) as the solution value corresponding to λi. Thus, if (ei, li) appears in
the solution-value-sequence then it must be obtained using a value λi that satisfies the strict
inequality in (10). Next, the optimality of T ∗

λi,X
for λi gives

ei + λili ≤ ei−1 + λili−1.

Solving for λi and combining with the above result gives

ei − ei+1

li+1 − li
< λi ≤

ei−1 − ei

li − li−1
(11)

For i = 1, 2, ..., m this equation defines m disjoint intervals whose union is the interval (0, e1].
Since all values of λ in (0, e1] produce a solution whose value appears in the solution value
sequence, and since the m intervals defined by (11) are disjoint, it must be true that all values
of λ in the ith interval yield a solution value (ei, li). ⊓⊔

Proof (Lemma 4) The additivity of error and tree size over sub-trees allows us to write

ei−1 − ei = e(T ∗
X(i− 1))− e(T ∗

X(i))

= e(T ∗
X(i− 1))− e(T̄X(i)) +

m
X

j=1

δ(T ∗
Xj

(i))
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and

li − li−1 = |T ∗
X(i)| − |T ∗

X(i− 1)|

= |T̄X(i)|+
m
X

j=1

|T ∗
Xj

(i)| − |T ∗
X(i− 1)|

=
m
X

j=1

|T ∗
Xj

(i)|.

Since e(T ∗
X

(i− 1)) is minimal for trees of size |T ∗
X

(i− 1)| we have e(T ∗
X

(i− 1))− e(T̄X(i)) ≥ 0
and therefore

ei−1 − ei ≤
m
X

j=1

δ(T ∗
Xj

(i)) (12)

and

ei−1 − ei

li − li−1
≤

Pm
j=1 δ(T ∗

Xj
(i))

P

j |T
∗
Xj

(i)|
≤ max

j∈{1,...,m}

 

δ(T ∗
Xj

(i))

|T ∗
Xj

(i)|

!

= max
j∈{1,...,m}

g(T
X́∗

j
(i))

where the last inequality follows from the bound

Pm
j=1 aj

Pm
j=1 bj

≤ max
j∈{1,...,m}

„

aj

bj

«

.

which holds for any aj > 0, bj > 0, j = 1, ..., m. ⊓⊔


